2017 Obesity Fact Sheet
Welcome message

Dear Colleagues,

It is my great honor and pleasure to publish the ‘2017 Obesity Fact Sheet’ of the Korean Society for the Study of Obesity (KSSO).

The ‘2017 Obesity Fact Sheet’ is the 3rd edition, with the 1st Edition published in 2015. It contains many contemporary aspects of obesity and its related comorbidities in Koreans. Representative data sources provided valuable information from the Korean National Health and Nutrition Examination Survey (KNHANES) and from the National Health Insurance Service (NHIS).

Data pertaining to over 10 million Korean adults were meticulously analyzed and described, providing excellent information regarding the health status of Koreans. We have designed this Fact Sheet to provide useful information to both public and health care providers.

We encourage you to take this booklet to improve your knowledge and clinical practice for Koreans. Additional information is anticipated in next year’s Fact Sheet and we hope it will be of assistance to doctors, nurses, nutritionists, physical educators, other health professionals, and to the general public.

We would like to cordially thank Dr. Kyung-do Han, Prof. Yong-Gyu Park and the team of statisticians who dedicated their knowledge, expertise and time to assist in the publication of this booklet. We especially thank members of the NHIS for their active support of our work. This booklet resulted from efforts of the NHIS-KSSO MOU Committee who worked collectively and tirelessly to produce this booklet. I would like to express my sincere appreciation to the Director of the NHIS-KSSO MOU Committee, Won-Young Lee, and to the co-Director, Yang-Hyun Kim, for their unwavering dedication and kindness.

I hope this booklet may be of assistance to health care providers and general public. It is our intention that the information it provides be applied to the promotion of Korean health. Obesity is an important cause of major chronic metabolic diseases and cancers. Not only is KSSO an academic organization but it has a role in policy-making, aiming to protect the health of the general population. We hope this Fact Sheet provides a valuable contribution to Korean national health policy formulation.

Best Regards,

2017 Obesity Fact Sheet

President of KSSO
Kee-Hyoung Lee

Chairman, Board of Directors
Soon Jib Yoo
Summary of 2017 Obesity Fact Sheet

- The prevalence of obesity and abdominal obesity increased since 2009.
- The prevalence of obesity with abdominal obesity also increased especially in 20s, 30s, and 40s.
- As the socioeconomic status increased, the prevalence of obesity increased in men and the prevalence of both obesity and abdominal obesity decreased in women.
- The one-person household had increased risk for obesity and abdominal obesity than more than one-person households especially in young male adults (19-39 years).
- The incidence of type 2 diabetes mellitus, hypertension and dyslipidemia gradually increased as the body mass index (BMI) and waist circumference increased, and even in subjects with more than BMI 35 kg/m2.
- The hazard ratio for myocardial infarction and ischemic stroke was higher in obesity stage I and stage II than normal weight.
- The prevalence of irregular menstruation was higher in obese women than non-obese women in all age groups.
- BMI was strongly associated with increased incidence of breast cancer among postmenopausal women, whereas it was inversely associated with incidence of breast cancer among premenopausal women.
- Maternal complications, such as eclampsia, and high-risk pregnancies, increased as the BMI of women increased.
Data source of
2017 Obesity Fact Sheet

Source of data
• The percentages and the total number of people over the age of 20 were determined using the National Health Checkup Database from 2006 through to 2015 and derived from the National Health Insurance Service (NHIS).
• Korean National Health and Nutrition Examination Survey (KNHANES) data 2010-2015 from the Korea Centers for Disease Control & Prevention were also used to analyze the prevalence of women’s health and obesity-related socioeconomic status.
• People over the age of 20 were included.

Data presentation
• Data were presented according to age and sex standardization, using the 2010 Census of the Korean population.
• Obesity Prevalence = \left(\frac{\text{Patients who were obese, based on a body mass index of } \geq 25 \text{ kg/m}^2}{\text{total number of individuals from the National Health Checkup}} \right) \times 100 \%
• Regarding socioeconomic variables, the level of education were divided into four groups: elementary school, middle school, high school, and university or higher. Income levels were divided into quartiles, ranging from Quartile 1 (the lowest) to Quartile 4 (the highest).
Definition of Obesity, Abdominal obesity, Class I and Class II obesity

• Obesity was defined as a body mass index (BMI, weight in kilograms divided by the square of height in meters) $\geq 25.0 \text{ kg/m}^2$ in adults, in accordance with the Asia-Pacific criteria of the WHO guidelines (WHO, 2000).
• Abdominal obesity was defined as a waist circumference (WC) $\geq 90 \text{ cm}$ in men and $\geq 85 \text{ cm}$ in women, according to the definition of the KSSO.
• Class I obesity was defined as $25 \leq \text{BMI} < 30 \text{ kg/m}^2$ and Class II obesity was defined as a $\text{BMI} \geq 30.0 \text{ kg/m}^2$.
01 | Obesity trend

2017 Obesity Fact Sheet
The prevalence of obesity steadily increased from 29.7% in 2009 to 32.4% in 2015 and the prevalence of abdominal obesity also steadily increased from 18.4% in 2009 to 20.8% in 2015.

Data derived from the NHIS data set: 2009-2015
Data was presented by age and sex standardization using the 2010 Census Korean population.
The definition of obesity is a BMI $\geq 25\text{kg/m}^2$ and that of abdominal obesity is a WC $\geq 90\text{cm}$ in men and $\geq 85\text{cm}$ in women.
The prevalence of obesity with abdominal obesity increased steadily from 15.1% in 2009 to 17.7% in 2015, and this phenomenon was especially observed in individuals in their second, third and fourth decades.

Data derived from the NHIS data set: 2009-2015
Data was presented by age and sex standardization using the 2010 Census Korean population.
The prevalence of obesity, by age group, between 2014 and 2015

- The prevalence of obesity increased steadily among those aged between 20 and 60 years, but decreased from 70 years of age, in total.
- In men, the prevalence increased until 30–40 years of age, but decreased from 40–50 years of age.
- In women, the prevalence increased to the mid-70 years of age, and decreased from the mid-70 years of age.

Data derived from the NHIS data set: 2014-2015
Data was presented by age and sex standardization using the 2010 Census Korean population.
The definition of obesity is a BMI ≥ 25kg/m².
The prevalence of abdominal obesity, by age group, between 2014 and 2015

- The prevalence of abdominal obesity increased steadily from 20–30 years of age to 70–80 years of age, but decreased from 80–90 years of age, in total.
- Before 60–70 years of age, the prevalence of abdominal obesity was higher in men than in women, but after 60–70 years of age, the prevalence of abdominal obesity in women was higher than in men.

Data derived from the NHIS data set: 2014-2015
Data was presented by age and sex standardization using the 2010 Census Korean population.
The definition of abdominal obesity is a WC ≥ 90cm in men and ≥ 85cm in women.
Obesity and socioeconomic status
Obesity and socioeconomic status

- In men, as education and income levels increased, the prevalence of obesity increased. However, no similar trend was found in abdominal obesity.
- In women, as education and income level increased, both the prevalence of obesity and abdominal obesity decreased.

Data derived from the KNHANES 6th data set: 2013-2015
The prevalence of obesity and abdominal obesity in one-person household versus more than one-person households

In both men and women, the prevalence of obesity and abdominal obesity was higher in one-person household than in more than one-person households, and this trend was more prominent among women.

Data derived from the KNHANES 6th data set: 2013-2015
The prevalence of obesity and abdominal obesity in one-person household versus more than one-person households, among the young adult group (aged 19-39 years)

- In men, the prevalence of obesity and abdominal obesity was higher in one-person households than in more than one-person households.
- In women, however, the prevalence of obesity and abdominal obesity was lower in one-person households than in more than one-person households.

Data derived from the KNHANES 6th data set: 2013-2015
The definition of T2DM, hypertension, dyslipidemia, MI, and ischemic stroke

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
<th>Mean F/U duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2DM</td>
<td>1) ICD-code: E11~14 &</td>
<td>5.3 years</td>
</tr>
<tr>
<td></td>
<td>2) T2DM medication</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1) ICD-code: I10~13, and I15 &</td>
<td>5.2 years</td>
</tr>
<tr>
<td></td>
<td>2) Hypertension medication</td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1) ICD-code: E78 &</td>
<td>5.0 years</td>
</tr>
<tr>
<td></td>
<td>2) Dyslipidemia medication</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>1) ICD-code: I21,22 &</td>
<td>5.4 years</td>
</tr>
<tr>
<td></td>
<td>2) Events-related hospitalization</td>
<td></td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>1) ICD-code: I63,64 &</td>
<td>5.4 years</td>
</tr>
<tr>
<td></td>
<td>2) Events-related hospitalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Claim for CT or MRI</td>
<td></td>
</tr>
</tbody>
</table>

T2DM, Type 2 diabetes mellitus; MI, myocardial infarction; CT, computed tomography, and MRI, magnetic resonance imaging
The incidence rate of T2DM, hypertension and dyslipidemia, according to BMI level 2009–2015

- Incident T2DM, hypertension and dyslipidemia increased gradually from the lowest level of BMI.
- Even in individuals with a BMI more than 35 kg/m², the incidence of morbidity still increased.
- Individuals who did health checkup during 2009-2012 were included and followed up to 2015.

Data derived from the NHIS data set: 2009-2015
Age, sex-adjusted rates by BMI per 1kg/m²
The incidence rate of T2DM, hypertension and dyslipidemia, according to WC 2009–2015

- Incident T2DM, hypertension and dyslipidemia increased gradually from the lowest level of WC.
- People who did health checkup during 2009-2012 were included and followed up to 2015.

Data derived from the NHIS data set: 2009-2015
Age, sex-adjusted rates by BMI per 1kg/m²

Hypertension

- M<65, W<60: 10.4
- M<70, W<75: 11.0
- M<75, W<80: 13.1
- M<80, W<85: 16.3
- M<85, W<90: 20.3
- M<90, W<95: 25.1
- M<95, W<100: 30.6
- M<100, W<105: 36.7
- M<105, W<110: 42.9
- M<110, W<115: 49.0
- M≥110, W<120: 56.4

Dyslipidemia

- M<65, W<60: 9.5
- M<70, W<75: 10.1
- M<75, W<80: 12.5
- M<80, W<85: 15.9
- M<85, W<90: 19.8
- M<90, W<95: 23.5
- M<95, W<100: 27.2
- M<100, W<105: 30.8
- M<105, W<110: 34.0
- M<110, W<115: 36.6
- M≥110, W<120: 38.4
The HR for T2DM, hypertension, dyslipidemia, MI, and ischemic stroke, according to combined BMI and WC

HR for each morbidities was higher in individuals with abdominal obesity than individuals without abdominal obesity after adjustment with age and sex.

Age and sex were adjusted. People who did health checkup during 2009-2012 were included and followed up to 2015.

HR, hazard ratio

Data derived from the NHIS data set: 2009-2015
No abdominal obesity

Abdominal obesity

BMI (kg/m²)

<18.5 18.5-23 23-25 25-30 ≥ 30

1.009 1.373 1.674 2.328 2.992

1.094 1.495 2.251

1.668

0.514 0.575 1.185 1.635 2.076 2.712

0.681 1.004

0.3 0.9 1.5

1.719 1.384 1.283 1.666 1.337

1.603

0.1 1.0 1.5

1.203 1.079 1.316 1.223 1.241 1.238

1.04 1.015 1.241

1.004
The HR for MI and ischemic stroke

- The HR for incident MI was 24.6% higher in the class I obesity group and 64.4% higher in the class II obesity group than in the normal weight group (BMI 18.5-25 kg/m²), after adjustment for age and sex, with a mean FU period of 5.4 years.
- The HR for incident stroke was 15.2% higher in the class I obesity group and 41.2% higher in the class II obesity group than in the normal weight group (BMI 18.5-25 kg/m²), after adjustment for age and sex, with a mean FU period of 5.4 years.

* Reference group

Age and sex were adjusted.
People who did health checkup during 2009-2012 were included and followed up to 2015.
Data derived from the NHIS data set: 2009-2015.
Obesity and women
The prevalence of obesity and abdominal obesity in women, according to age group

- The prevalence of obesity and abdominal obesity in women increased, according to age group.
- At the age of 50, the prevalence of abdominal obesity was higher than the prevalence of obesity.

Data derived from the NHIS data set: 2014-2015
Irregular menstruation

Prevalence of irregular menstruation was higher in the obesity group than in the non-obese group in all age groups.

The diagnosis of irregular menstruation is based on self-questionnaire.
Data derived from the KNHANES 5th 2010-2012

Irregular menstruation by age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Non-obesity</th>
<th>Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>5.8</td>
<td>6.8</td>
</tr>
<tr>
<td>15-19</td>
<td>15.3</td>
<td>22.5</td>
</tr>
<tr>
<td>20-24</td>
<td>19.8</td>
<td>33.3</td>
</tr>
<tr>
<td>25-29</td>
<td>13.1</td>
<td>22.8</td>
</tr>
<tr>
<td>30-34</td>
<td>11.0</td>
<td>19.7</td>
</tr>
<tr>
<td>35-39</td>
<td>6.8</td>
<td>12.3</td>
</tr>
<tr>
<td>40-44</td>
<td>6.1</td>
<td>12.3</td>
</tr>
<tr>
<td>45-49 (years)</td>
<td>15.5</td>
<td>17.0</td>
</tr>
</tbody>
</table>
BMI and breast cancer risk

BMI was associated with increased incidence of breast cancer among postmenopausal women, whereas it was inversely associated with incidence of breast cancer among premenopausal women.

Menopausal status was determined at the age of 50 years, which as assumed to represent the usual age at menopause among Korean women. Breast cancer was defined as ICD-C50 and a registration for intractable and rare diseases. People who did health checkup during 2006-2012 were included and followed to 2015.

Data derived from the NHIS data set: 2006-2015
Prepregnancy weight and maternal complication

The maternal complications such as eclampsia and high-risk pregnancies increased as the BMI of women increased.

Age-adjusted data
Eclampsia was defined as ICD O11, 14.0, 14.1, 14.9, 15.0, 15.1, 15.2, and 15.9.
High risk pregnancies was defined as ICD-Z 35.8 and 35.9.
The event within 280 before delivery was included during 2007-2015.
Data derived from the NHIS data set: 2006-2015

* Reference group
2017 Obesity Fact Sheet
Task Force Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Won-Young Lee</td>
<td>Sungkyunkwan University</td>
</tr>
<tr>
<td>Secretary</td>
<td>Yang-Hyun Kim</td>
<td>Korea University</td>
</tr>
<tr>
<td>Member</td>
<td>Hyuk-Sang Kwon</td>
<td>The Catholic University of Korea</td>
</tr>
<tr>
<td></td>
<td>Se Eun Park</td>
<td>Sungkyunkwan University</td>
</tr>
<tr>
<td></td>
<td>Mi Hae Seo</td>
<td>Soonchunhyang University</td>
</tr>
<tr>
<td></td>
<td>Jang Won Son</td>
<td>The Catholic University of Korea</td>
</tr>
<tr>
<td></td>
<td>Seung-Hyun Yoo</td>
<td>National Health Insurance Service</td>
</tr>
<tr>
<td></td>
<td>Seong-Su Lee</td>
<td>The Catholic University of Korea</td>
</tr>
<tr>
<td></td>
<td>Chan-Hee Jung</td>
<td>Soonchunhyang University</td>
</tr>
<tr>
<td></td>
<td>Kyungdo Han</td>
<td>The Catholic University of Korea</td>
</tr>
<tr>
<td></td>
<td>Byungduck Han</td>
<td>Sahmyook Medical Center</td>
</tr>
</tbody>
</table>

Publisher Soon Jib Yoo, Chairman, Board of Directors
Editor Won-Young Lee, Director, Committee of NHIS MOU
Published by Korean Society for the Study of Obesity
Printed by Sejong C&P

www.kosso.or.kr/eng/
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institution</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Kee-Hyoung Lee</td>
<td>Korea University</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Vice-president</td>
<td>Kwan-Woo Lee</td>
<td>Ajou University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td></td>
<td>Kyu-Rae Lee</td>
<td>Gachon University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Chairman, Board of Directors</td>
<td>Soon Jib Yoo</td>
<td>The Catholic University of Korea</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, General Affairs</td>
<td>Hyuk-Sang Kwon</td>
<td>The Catholic University of Korea</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Scientific Affairs</td>
<td>Cheol-Young Park</td>
<td>Sungkyunkwan University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Publication</td>
<td>Soo Lim</td>
<td>Seoul National University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Training</td>
<td>Sang Yeoup Lee</td>
<td>Pusan National University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Research</td>
<td>Min-Seon Kim</td>
<td>University of Ulsan</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Public Relation</td>
<td>Jae-Heon Kang</td>
<td>Inje University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Education</td>
<td>Sang Woo Oh</td>
<td>Dongguk University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Planning</td>
<td>Sung Rae Kim</td>
<td>The Catholic University of Korea</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Policy</td>
<td>Dae Jung Kim</td>
<td>Ajou University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Finance</td>
<td>Kiyoung Lee</td>
<td>Gachon University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of International Liaison</td>
<td>Kyoung Kon Kim</td>
<td>Gachon University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Position</td>
<td>Name</td>
<td>Institution</td>
<td>Department</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Director, Committee of Health Insurance and Legislation</td>
<td>Seon Mee Kim</td>
<td>Korea University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Metabolic Syndrome</td>
<td>Kyung Mook Choi</td>
<td>Korea University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Clinical Guideline</td>
<td>Sung Soo Kim</td>
<td>Chungnam National University</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Food and Nutrition</td>
<td>Eun Mi Kim</td>
<td>Kangbuk Samsung Hospital</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Director, Committee of Behavior Therapy</td>
<td>Hye Jung Shin</td>
<td>National Medical Center</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Director, Committee of Childhood and Adolescent Obesity</td>
<td>Sochung Chung</td>
<td>Konkuk University</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Director, Committee of Bariatric Surgery</td>
<td>Joo-Ho Lee</td>
<td>Ewha Womans University</td>
<td>Surgery</td>
</tr>
<tr>
<td>Director, Committee of Information</td>
<td>Chong Hwa Kim</td>
<td>Sejong Hospital</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of External Cooperation</td>
<td>Keun-Sang Yum</td>
<td>The Catholic University of Korea</td>
<td>Family Medicine</td>
</tr>
<tr>
<td>Director, Committee of Exercise</td>
<td>Yun-A Shin</td>
<td>Dankook University</td>
<td>Sports Science</td>
</tr>
<tr>
<td>Director, Committee of Clinics</td>
<td>Youn Hui Cho</td>
<td>Cho’s Clinic</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Director, Committee of NHIS MOU</td>
<td>Won-Young Lee</td>
<td>Sungkyunkwan University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director, Committee of Audit</td>
<td>Chang Beom Lee</td>
<td>Hanyang University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td>Director Without Portfolio</td>
<td>Doo-Man Kim</td>
<td>Hallym University</td>
<td>Endocrinology</td>
</tr>
<tr>
<td></td>
<td>SeungJoon Oh</td>
<td>Kyung Hee University</td>
<td>Endocrinology</td>
</tr>
</tbody>
</table>
This study was supported by a grant from the Korean Health Technology and Research and Development project, Ministry of Health and Welfare, Republic of Korea (HC16C2285)